Step |
Hyp |
Ref |
Expression |
1 |
|
latmcom.b |
|- B = ( Base ` K ) |
2 |
|
latmcom.m |
|- ./\ = ( meet ` K ) |
3 |
|
opelxpi |
|- ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
4 |
3
|
3adant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
5 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
6 |
1 5 2
|
islat |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom ( join ` K ) = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
7 |
|
simprr |
|- ( ( K e. Poset /\ ( dom ( join ` K ) = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) -> dom ./\ = ( B X. B ) ) |
8 |
6 7
|
sylbi |
|- ( K e. Lat -> dom ./\ = ( B X. B ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom ./\ = ( B X. B ) ) |
10 |
4 9
|
eleqtrrd |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom ./\ ) |
11 |
|
opelxpi |
|- ( ( Y e. B /\ X e. B ) -> <. Y , X >. e. ( B X. B ) ) |
12 |
11
|
ancoms |
|- ( ( X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
13 |
12
|
3adant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
14 |
13 9
|
eleqtrrd |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. dom ./\ ) |
15 |
10 14
|
jca |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) |
16 |
|
latpos |
|- ( K e. Lat -> K e. Poset ) |
17 |
1 2
|
meetcom |
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
18 |
16 17
|
syl3anl1 |
|- ( ( ( K e. Lat /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
19 |
15 18
|
mpdan |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |