Metamath Proof Explorer


Theorem latjidm

Description: Lattice join is idempotent. (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latidm.b
|- B = ( Base ` K )
latidm.j
|- .\/ = ( join ` K )
Assertion latjidm
|- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X )

Proof

Step Hyp Ref Expression
1 latidm.b
 |-  B = ( Base ` K )
2 latidm.j
 |-  .\/ = ( join ` K )
3 eqid
 |-  ( le ` K ) = ( le ` K )
4 simpl
 |-  ( ( K e. Lat /\ X e. B ) -> K e. Lat )
5 1 2 latjcl
 |-  ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X .\/ X ) e. B )
6 5 3anidm23
 |-  ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) e. B )
7 simpr
 |-  ( ( K e. Lat /\ X e. B ) -> X e. B )
8 1 3 latref
 |-  ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X )
9 1 3 2 latjle12
 |-  ( ( K e. Lat /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) )
10 4 7 7 7 9 syl13anc
 |-  ( ( K e. Lat /\ X e. B ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) )
11 8 8 10 mpbi2and
 |-  ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) ( le ` K ) X )
12 1 3 2 latlej1
 |-  ( ( K e. Lat /\ X e. B /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) )
13 12 3anidm23
 |-  ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) )
14 1 3 4 6 7 11 13 latasymd
 |-  ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X )