Step |
Hyp |
Ref |
Expression |
1 |
|
latjidm.b |
|- B = ( Base ` K ) |
2 |
|
latjidm.j |
|- .\/ = ( join ` K ) |
3 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
4 |
|
simpl |
|- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
5 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X .\/ X ) e. B ) |
6 |
5
|
3anidm23 |
|- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) e. B ) |
7 |
|
simpr |
|- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
8 |
1 3
|
latref |
|- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
9 |
1 3 2
|
latjle12 |
|- ( ( K e. Lat /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) ) |
10 |
4 7 7 7 9
|
syl13anc |
|- ( ( K e. Lat /\ X e. B ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) ) |
11 |
8 8 10
|
mpbi2and |
|- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) ( le ` K ) X ) |
12 |
1 3 2
|
latlej1 |
|- ( ( K e. Lat /\ X e. B /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) ) |
13 |
12
|
3anidm23 |
|- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) ) |
14 |
1 3 4 6 7 11 13
|
latasymd |
|- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X ) |