Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latref.b | |- B = ( Base ` K ) |
|
| latref.l | |- .<_ = ( le ` K ) |
||
| Assertion | latref | |- ( ( K e. Lat /\ X e. B ) -> X .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latref.b | |- B = ( Base ` K ) |
|
| 2 | latref.l | |- .<_ = ( le ` K ) |
|
| 3 | latpos | |- ( K e. Lat -> K e. Poset ) |
|
| 4 | 1 2 | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| 5 | 3 4 | sylan | |- ( ( K e. Lat /\ X e. B ) -> X .<_ X ) |