Metamath Proof Explorer


Theorem latref

Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b
|- B = ( Base ` K )
latref.l
|- .<_ = ( le ` K )
Assertion latref
|- ( ( K e. Lat /\ X e. B ) -> X .<_ X )

Proof

Step Hyp Ref Expression
1 latref.b
 |-  B = ( Base ` K )
2 latref.l
 |-  .<_ = ( le ` K )
3 latpos
 |-  ( K e. Lat -> K e. Poset )
4 1 2 posref
 |-  ( ( K e. Poset /\ X e. B ) -> X .<_ X )
5 3 4 sylan
 |-  ( ( K e. Lat /\ X e. B ) -> X .<_ X )