Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latasymd.b | |- B = ( Base ` K ) |
|
latasymd.l | |- .<_ = ( le ` K ) |
||
latasymd.3 | |- ( ph -> K e. Lat ) |
||
latasymd.4 | |- ( ph -> X e. B ) |
||
latasymd.5 | |- ( ph -> Y e. B ) |
||
latasymd.6 | |- ( ph -> X .<_ Y ) |
||
latasymd.7 | |- ( ph -> Y .<_ X ) |
||
Assertion | latasymd | |- ( ph -> X = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latasymd.b | |- B = ( Base ` K ) |
|
2 | latasymd.l | |- .<_ = ( le ` K ) |
|
3 | latasymd.3 | |- ( ph -> K e. Lat ) |
|
4 | latasymd.4 | |- ( ph -> X e. B ) |
|
5 | latasymd.5 | |- ( ph -> Y e. B ) |
|
6 | latasymd.6 | |- ( ph -> X .<_ Y ) |
|
7 | latasymd.7 | |- ( ph -> Y .<_ X ) |
|
8 | 1 2 | latasymb | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
9 | 3 4 5 8 | syl3anc | |- ( ph -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
10 | 6 7 9 | mpbi2and | |- ( ph -> X = Y ) |