Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lattrd.b | |- B = ( Base ` K ) |
|
| lattrd.l | |- .<_ = ( le ` K ) |
||
| lattrd.1 | |- ( ph -> K e. Lat ) |
||
| lattrd.2 | |- ( ph -> X e. B ) |
||
| lattrd.3 | |- ( ph -> Y e. B ) |
||
| lattrd.4 | |- ( ph -> Z e. B ) |
||
| lattrd.5 | |- ( ph -> X .<_ Y ) |
||
| lattrd.6 | |- ( ph -> Y .<_ Z ) |
||
| Assertion | lattrd | |- ( ph -> X .<_ Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.b | |- B = ( Base ` K ) |
|
| 2 | lattrd.l | |- .<_ = ( le ` K ) |
|
| 3 | lattrd.1 | |- ( ph -> K e. Lat ) |
|
| 4 | lattrd.2 | |- ( ph -> X e. B ) |
|
| 5 | lattrd.3 | |- ( ph -> Y e. B ) |
|
| 6 | lattrd.4 | |- ( ph -> Z e. B ) |
|
| 7 | lattrd.5 | |- ( ph -> X .<_ Y ) |
|
| 8 | lattrd.6 | |- ( ph -> Y .<_ Z ) |
|
| 9 | 1 2 | lattr | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
| 10 | 3 4 5 6 9 | syl13anc | |- ( ph -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
| 11 | 7 8 10 | mp2and | |- ( ph -> X .<_ Z ) |