Metamath Proof Explorer


Theorem lattrd

Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)

Ref Expression
Hypotheses lattrd.b B=BaseK
lattrd.l ˙=K
lattrd.1 φKLat
lattrd.2 φXB
lattrd.3 φYB
lattrd.4 φZB
lattrd.5 φX˙Y
lattrd.6 φY˙Z
Assertion lattrd φX˙Z

Proof

Step Hyp Ref Expression
1 lattrd.b B=BaseK
2 lattrd.l ˙=K
3 lattrd.1 φKLat
4 lattrd.2 φXB
5 lattrd.3 φYB
6 lattrd.4 φZB
7 lattrd.5 φX˙Y
8 lattrd.6 φY˙Z
9 1 2 lattr KLatXBYBZBX˙YY˙ZX˙Z
10 3 4 5 6 9 syl13anc φX˙YY˙ZX˙Z
11 7 8 10 mp2and φX˙Z