Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lattrd.b | |
|
lattrd.l | |
||
lattrd.1 | |
||
lattrd.2 | |
||
lattrd.3 | |
||
lattrd.4 | |
||
lattrd.5 | |
||
lattrd.6 | |
||
Assertion | lattrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.b | |
|
2 | lattrd.l | |
|
3 | lattrd.1 | |
|
4 | lattrd.2 | |
|
5 | lattrd.3 | |
|
6 | lattrd.4 | |
|
7 | lattrd.5 | |
|
8 | lattrd.6 | |
|
9 | 1 2 | lattr | |
10 | 3 4 5 6 9 | syl13anc | |
11 | 7 8 10 | mp2and | |