Metamath Proof Explorer


Theorem lattr

Description: A lattice ordering is transitive. ( sstr analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses latref.b B = Base K
latref.l ˙ = K
Assertion lattr K Lat X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z

Proof

Step Hyp Ref Expression
1 latref.b B = Base K
2 latref.l ˙ = K
3 latpos K Lat K Poset
4 1 2 postr K Poset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z
5 3 4 sylan K Lat X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z