Metamath Proof Explorer


Theorem latasymd

Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)

Ref Expression
Hypotheses latasymd.b 𝐵 = ( Base ‘ 𝐾 )
latasymd.l = ( le ‘ 𝐾 )
latasymd.3 ( 𝜑𝐾 ∈ Lat )
latasymd.4 ( 𝜑𝑋𝐵 )
latasymd.5 ( 𝜑𝑌𝐵 )
latasymd.6 ( 𝜑𝑋 𝑌 )
latasymd.7 ( 𝜑𝑌 𝑋 )
Assertion latasymd ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 latasymd.b 𝐵 = ( Base ‘ 𝐾 )
2 latasymd.l = ( le ‘ 𝐾 )
3 latasymd.3 ( 𝜑𝐾 ∈ Lat )
4 latasymd.4 ( 𝜑𝑋𝐵 )
5 latasymd.5 ( 𝜑𝑌𝐵 )
6 latasymd.6 ( 𝜑𝑋 𝑌 )
7 latasymd.7 ( 𝜑𝑌 𝑋 )
8 1 2 latasymb ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
9 3 4 5 8 syl3anc ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
10 6 7 9 mpbi2and ( 𝜑𝑋 = 𝑌 )