Metamath Proof Explorer
Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)
|
|
Ref |
Expression |
|
Hypotheses |
latasymd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
latasymd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
latasymd.3 |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
|
|
latasymd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
latasymd.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
latasymd.6 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
|
|
latasymd.7 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) |
|
Assertion |
latasymd |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
latasymd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latasymd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latasymd.3 |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
4 |
|
latasymd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
latasymd.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
latasymd.6 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
7 |
|
latasymd.7 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) |
8 |
1 2
|
latasymb |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
9 |
3 4 5 8
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
10 |
6 7 9
|
mpbi2and |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |