| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlsupr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
cvlsupr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cvlsupr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑄 ) |
| 5 |
4
|
necomd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≠ 𝑃 ) |
| 6 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝑃 ∨ 𝑅 ) = ( 𝑃 ∨ 𝑃 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝑄 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑅 = 𝑃 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑃 ) ) ) |
| 10 |
|
eqcom |
⊢ ( ( 𝑃 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑃 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) |
| 11 |
9 10
|
bitrdi |
⊢ ( 𝑅 = 𝑃 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) ) |
| 13 |
6 12
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) |
| 14 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ CvLat ) |
| 15 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ Lat ) |
| 17 |
|
simpl21 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ 𝐴 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 19 |
18 1
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
18 3
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
| 24 |
13 23
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑄 ∨ 𝑃 ) = 𝑃 ) |
| 25 |
24
|
ex |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑃 → ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
| 26 |
|
simpl22 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ 𝐴 ) |
| 27 |
18 1
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
18 2 3
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ≤ 𝑃 ↔ ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
| 30 |
16 28 20 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ 𝑃 ↔ ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
| 31 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
| 32 |
14 31
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ AtLat ) |
| 33 |
2 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃 ) ) |
| 34 |
32 26 17 33
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃 ) ) |
| 35 |
30 34
|
bitr3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( ( 𝑄 ∨ 𝑃 ) = 𝑃 ↔ 𝑄 = 𝑃 ) ) |
| 36 |
25 35
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑃 → 𝑄 = 𝑃 ) ) |
| 37 |
36
|
necon3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≠ 𝑃 → 𝑅 ≠ 𝑃 ) ) |
| 38 |
5 37
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≠ 𝑃 ) |
| 39 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑅 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑃 ∨ 𝑄 ) ) |
| 41 |
|
oveq2 |
⊢ ( 𝑅 = 𝑄 → ( 𝑄 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑄 ) ) |
| 42 |
40 41
|
eqeq12d |
⊢ ( 𝑅 = 𝑄 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) ) |
| 44 |
39 43
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) |
| 45 |
18 3
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 46 |
16 28 45
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 48 |
44 47
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) |
| 49 |
48
|
ex |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑄 → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
| 50 |
18 2 3
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ≤ 𝑄 ↔ ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
| 51 |
16 20 28 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≤ 𝑄 ↔ ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
| 52 |
2 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 53 |
32 17 26 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 54 |
51 53
|
bitr3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( ( 𝑃 ∨ 𝑄 ) = 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 55 |
49 54
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑄 → 𝑃 = 𝑄 ) ) |
| 56 |
55
|
necon3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≠ 𝑄 → 𝑅 ≠ 𝑄 ) ) |
| 57 |
4 56
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≠ 𝑄 ) |
| 58 |
|
simpl23 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ 𝐴 ) |
| 59 |
18 1
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
18 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 62 |
16 28 60 61
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 63 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 64 |
62 63
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) ) |
| 65 |
2 3 1
|
cvlatexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑄 ≠ 𝑃 ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 66 |
14 26 58 17 5 65
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 67 |
64 66
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 68 |
38 57 67
|
3jca |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 69 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 70 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ CvLat ) |
| 71 |
70 15
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
| 72 |
|
simpl21 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 73 |
72 19
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 74 |
|
simpl22 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 75 |
74 27
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 76 |
18 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 77 |
71 73 75 76
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 78 |
77
|
breq2d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) ) ) |
| 79 |
|
simpl23 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
| 80 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≠ 𝑄 ) |
| 81 |
2 3 1
|
cvlatexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑅 ≠ 𝑄 ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
| 82 |
70 79 72 74 80 81
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
| 83 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≠ 𝑃 ) |
| 84 |
83
|
necomd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑅 ) |
| 85 |
2 3 1
|
cvlatexchb2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 86 |
70 72 74 79 84 85
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 87 |
82 86
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 88 |
78 87
|
sylbid |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 89 |
69 88
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 90 |
68 89
|
impbida |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |