Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon3d.1 | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 → 𝐶 = 𝐷 ) ) | |
Assertion | necon3d | ⊢ ( 𝜑 → ( 𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3d.1 | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 → 𝐶 = 𝐷 ) ) | |
2 | 1 | necon3ad | ⊢ ( 𝜑 → ( 𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵 ) ) |
3 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
4 | 2 3 | syl6ibr | ⊢ ( 𝜑 → ( 𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵 ) ) |