Step |
Hyp |
Ref |
Expression |
1 |
|
cvlatexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cvlatexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cvlatexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
1 2 3
|
cvlatexchb1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
5 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝐾 ∈ Lat ) |
7 |
|
simp22 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑄 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
10 |
7 9
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
11 |
|
simp23 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑅 ∈ 𝐴 ) |
12 |
8 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
14 |
8 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
15 |
6 10 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
16 |
15
|
breq2d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
17 |
|
simp21 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑃 ∈ 𝐴 ) |
18 |
8 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
20 |
8 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑃 ) ) |
21 |
6 19 13 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑃 ) ) |
22 |
21 15
|
eqeq12d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
23 |
4 16 22
|
3bitr4d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |