| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlsupr2.a |
|- A = ( Atoms ` K ) |
| 2 |
|
cvlsupr2.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cvlsupr2.j |
|- .\/ = ( join ` K ) |
| 4 |
|
simpl3 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> P =/= Q ) |
| 5 |
4
|
necomd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> Q =/= P ) |
| 6 |
|
simplr |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = P ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 7 |
|
oveq2 |
|- ( R = P -> ( P .\/ R ) = ( P .\/ P ) ) |
| 8 |
|
oveq2 |
|- ( R = P -> ( Q .\/ R ) = ( Q .\/ P ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( R = P -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( P .\/ P ) = ( Q .\/ P ) ) ) |
| 10 |
|
eqcom |
|- ( ( P .\/ P ) = ( Q .\/ P ) <-> ( Q .\/ P ) = ( P .\/ P ) ) |
| 11 |
9 10
|
bitrdi |
|- ( R = P -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( Q .\/ P ) = ( P .\/ P ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = P ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( Q .\/ P ) = ( P .\/ P ) ) ) |
| 13 |
6 12
|
mpbid |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = P ) -> ( Q .\/ P ) = ( P .\/ P ) ) |
| 14 |
|
simpl1 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> K e. CvLat ) |
| 15 |
|
cvllat |
|- ( K e. CvLat -> K e. Lat ) |
| 16 |
14 15
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> K e. Lat ) |
| 17 |
|
simpl21 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> P e. A ) |
| 18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 19 |
18 1
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 20 |
17 19
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> P e. ( Base ` K ) ) |
| 21 |
18 3
|
latjidm |
|- ( ( K e. Lat /\ P e. ( Base ` K ) ) -> ( P .\/ P ) = P ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( P .\/ P ) = P ) |
| 23 |
22
|
adantr |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = P ) -> ( P .\/ P ) = P ) |
| 24 |
13 23
|
eqtrd |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = P ) -> ( Q .\/ P ) = P ) |
| 25 |
24
|
ex |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R = P -> ( Q .\/ P ) = P ) ) |
| 26 |
|
simpl22 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> Q e. A ) |
| 27 |
18 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 28 |
26 27
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> Q e. ( Base ` K ) ) |
| 29 |
18 2 3
|
latleeqj1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( Q .<_ P <-> ( Q .\/ P ) = P ) ) |
| 30 |
16 28 20 29
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( Q .<_ P <-> ( Q .\/ P ) = P ) ) |
| 31 |
|
cvlatl |
|- ( K e. CvLat -> K e. AtLat ) |
| 32 |
14 31
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> K e. AtLat ) |
| 33 |
2 1
|
atcmp |
|- ( ( K e. AtLat /\ Q e. A /\ P e. A ) -> ( Q .<_ P <-> Q = P ) ) |
| 34 |
32 26 17 33
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( Q .<_ P <-> Q = P ) ) |
| 35 |
30 34
|
bitr3d |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( ( Q .\/ P ) = P <-> Q = P ) ) |
| 36 |
25 35
|
sylibd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R = P -> Q = P ) ) |
| 37 |
36
|
necon3d |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( Q =/= P -> R =/= P ) ) |
| 38 |
5 37
|
mpd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R =/= P ) |
| 39 |
|
simplr |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = Q ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 40 |
|
oveq2 |
|- ( R = Q -> ( P .\/ R ) = ( P .\/ Q ) ) |
| 41 |
|
oveq2 |
|- ( R = Q -> ( Q .\/ R ) = ( Q .\/ Q ) ) |
| 42 |
40 41
|
eqeq12d |
|- ( R = Q -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( P .\/ Q ) = ( Q .\/ Q ) ) ) |
| 43 |
42
|
adantl |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( P .\/ Q ) = ( Q .\/ Q ) ) ) |
| 44 |
39 43
|
mpbid |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = Q ) -> ( P .\/ Q ) = ( Q .\/ Q ) ) |
| 45 |
18 3
|
latjidm |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) ) -> ( Q .\/ Q ) = Q ) |
| 46 |
16 28 45
|
syl2anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( Q .\/ Q ) = Q ) |
| 47 |
46
|
adantr |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = Q ) -> ( Q .\/ Q ) = Q ) |
| 48 |
44 47
|
eqtrd |
|- ( ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ R = Q ) -> ( P .\/ Q ) = Q ) |
| 49 |
48
|
ex |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R = Q -> ( P .\/ Q ) = Q ) ) |
| 50 |
18 2 3
|
latleeqj1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .<_ Q <-> ( P .\/ Q ) = Q ) ) |
| 51 |
16 20 28 50
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( P .<_ Q <-> ( P .\/ Q ) = Q ) ) |
| 52 |
2 1
|
atcmp |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) ) |
| 53 |
32 17 26 52
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( P .<_ Q <-> P = Q ) ) |
| 54 |
51 53
|
bitr3d |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( ( P .\/ Q ) = Q <-> P = Q ) ) |
| 55 |
49 54
|
sylibd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R = Q -> P = Q ) ) |
| 56 |
55
|
necon3d |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( P =/= Q -> R =/= Q ) ) |
| 57 |
4 56
|
mpd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R =/= Q ) |
| 58 |
|
simpl23 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R e. A ) |
| 59 |
18 1
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 60 |
58 59
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R e. ( Base ` K ) ) |
| 61 |
18 2 3
|
latlej1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> Q .<_ ( Q .\/ R ) ) |
| 62 |
16 28 60 61
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> Q .<_ ( Q .\/ R ) ) |
| 63 |
|
simpr |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 64 |
62 63
|
breqtrrd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> Q .<_ ( P .\/ R ) ) |
| 65 |
2 3 1
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( Q e. A /\ R e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
| 66 |
14 26 58 17 5 65
|
syl131anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
| 67 |
64 66
|
mpd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R .<_ ( P .\/ Q ) ) |
| 68 |
38 57 67
|
3jca |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) |
| 69 |
|
simpr3 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
| 70 |
|
simpl1 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> K e. CvLat ) |
| 71 |
70 15
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
| 72 |
|
simpl21 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> P e. A ) |
| 73 |
72 19
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> P e. ( Base ` K ) ) |
| 74 |
|
simpl22 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
| 75 |
74 27
|
syl |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> Q e. ( Base ` K ) ) |
| 76 |
18 3
|
latjcom |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 77 |
71 73 75 76
|
syl3anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 78 |
77
|
breq2d |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( P .\/ Q ) <-> R .<_ ( Q .\/ P ) ) ) |
| 79 |
|
simpl23 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
| 80 |
|
simpr2 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> R =/= Q ) |
| 81 |
2 3 1
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( R e. A /\ P e. A /\ Q e. A ) /\ R =/= Q ) -> ( R .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ R ) ) ) |
| 82 |
70 79 72 74 80 81
|
syl131anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ R ) ) ) |
| 83 |
|
simpr1 |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> R =/= P ) |
| 84 |
83
|
necomd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> P =/= R ) |
| 85 |
2 3 1
|
cvlatexchb2 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 86 |
70 72 74 79 84 85
|
syl131anc |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 87 |
82 86
|
sylibd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( Q .\/ P ) -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 88 |
78 87
|
sylbid |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( P .\/ Q ) -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 89 |
69 88
|
mpd |
|- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 90 |
68 89
|
impbida |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) |