| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atcmp.l |
|- .<_ = ( le ` K ) |
| 2 |
|
atcmp.a |
|- A = ( Atoms ` K ) |
| 3 |
|
atlpos |
|- ( K e. AtLat -> K e. Poset ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> K e. Poset ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
5 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> P e. ( Base ` K ) ) |
| 8 |
5 2
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> Q e. ( Base ` K ) ) |
| 10 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 11 |
5 10
|
atl0cl |
|- ( K e. AtLat -> ( 0. ` K ) e. ( Base ` K ) ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 13 |
|
eqid |
|- ( |
| 14 |
10 13 2
|
atcvr0 |
|- ( ( K e. AtLat /\ P e. A ) -> ( 0. ` K ) ( |
| 15 |
14
|
3adant3 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( |
| 16 |
10 13 2
|
atcvr0 |
|- ( ( K e. AtLat /\ Q e. A ) -> ( 0. ` K ) ( |
| 17 |
16
|
3adant2 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( |
| 18 |
5 1 13
|
cvrcmp |
|- ( ( K e. Poset /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( 0. ` K ) e. ( Base ` K ) ) /\ ( ( 0. ` K ) ( ( P .<_ Q <-> P = Q ) ) |
| 19 |
4 7 9 12 15 17 18
|
syl132anc |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) ) |