Metamath Proof Explorer


Theorem simpr2

Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpr2
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ch )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ ch ) -> ch )
2 1 3ad2antr2
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ch )