Metamath Proof Explorer


Theorem simpr1

Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpr1
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ps )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ ps ) -> ps )
2 1 3ad2antr1
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ps )