Metamath Proof Explorer


Theorem cvr1

Description: A Hilbert lattice has the covering property. Proposition 1(ii) in Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvr1.b B=BaseK
cvr1.l ˙=K
cvr1.j ˙=joinK
cvr1.c C=K
cvr1.a A=AtomsK
Assertion cvr1 KHLXBPA¬P˙XXCX˙P

Proof

Step Hyp Ref Expression
1 cvr1.b B=BaseK
2 cvr1.l ˙=K
3 cvr1.j ˙=joinK
4 cvr1.c C=K
5 cvr1.a A=AtomsK
6 hlomcmcv KHLKOMLKCLatKCvLat
7 1 2 3 4 5 cvlcvr1 KOMLKCLatKCvLatXBPA¬P˙XXCX˙P
8 6 7 syl3an1 KHLXBPA¬P˙XXCX˙P