Metamath Proof Explorer


Theorem cvrntr

Description: The covers relation is not transitive. ( cvntr analog.) (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses cvrntr.b B=BaseK
cvrntr.c C=K
Assertion cvrntr KAXBYBZBXCYYCZ¬XCZ

Proof

Step Hyp Ref Expression
1 cvrntr.b B=BaseK
2 cvrntr.c C=K
3 eqid <K=<K
4 1 3 2 cvrlt KAXBYBXCYX<KY
5 4 ex KAXBYBXCYX<KY
6 5 3adant3r3 KAXBYBZBXCYX<KY
7 1 3 2 ltcvrntr KAXBYBZBX<KYYCZ¬XCZ
8 6 7 syland KAXBYBZBXCYYCZ¬XCZ