Step |
Hyp |
Ref |
Expression |
1 |
|
cvrntr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrntr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
4 |
1 3 2
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) |
5 |
4
|
ex |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) ) |
6 |
5
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) ) |
7 |
1 3 2
|
ltcvrntr |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ∧ 𝑌 𝐶 𝑍 ) → ¬ 𝑋 𝐶 𝑍 ) ) |
8 |
6 7
|
syland |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 𝐶 𝑌 ∧ 𝑌 𝐶 𝑍 ) → ¬ 𝑋 𝐶 𝑍 ) ) |