Metamath Proof Explorer


Theorem cxpsubd

Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
cxpefd.3 φB
cxpaddd.4 φC
Assertion cxpsubd φABC=ABAC

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 cxpefd.3 φB
4 cxpaddd.4 φC
5 cxpsub AA0BCABC=ABAC
6 1 2 3 4 5 syl211anc φABC=ABAC