Metamath Proof Explorer


Theorem dalem62

Description: Lemma for dath . Eliminate the condition ps containing dummy variables c and d . (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem62.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem62.l ˙=K
dalem62.j ˙=joinK
dalem62.a A=AtomsK
dalem62.m ˙=meetK
dalem62.o O=LPlanesK
dalem62.y Y=P˙Q˙R
dalem62.z Z=S˙T˙U
dalem62.d D=P˙Q˙S˙T
dalem62.e E=Q˙R˙T˙U
dalem62.f F=R˙P˙U˙S
Assertion dalem62 φY=ZF˙D˙E

Proof

Step Hyp Ref Expression
1 dalem62.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem62.l ˙=K
3 dalem62.j ˙=joinK
4 dalem62.a A=AtomsK
5 dalem62.m ˙=meetK
6 dalem62.o O=LPlanesK
7 dalem62.y Y=P˙Q˙R
8 dalem62.z Z=S˙T˙U
9 dalem62.d D=P˙Q˙S˙T
10 dalem62.e E=Q˙R˙T˙U
11 dalem62.f F=R˙P˙U˙S
12 biid cAdA¬c˙Ydc¬d˙YC˙c˙dcAdA¬c˙Ydc¬d˙YC˙c˙d
13 1 2 3 4 12 6 7 8 dalem20 φY=ZcdcAdA¬c˙Ydc¬d˙YC˙c˙d
14 1 2 3 4 12 5 6 7 8 9 10 11 dalem61 φY=ZcAdA¬c˙Ydc¬d˙YC˙c˙dF˙D˙E
15 14 3expia φY=ZcAdA¬c˙Ydc¬d˙YC˙c˙dF˙D˙E
16 15 exlimdvv φY=ZcdcAdA¬c˙Ydc¬d˙YC˙c˙dF˙D˙E
17 13 16 mpd φY=ZF˙D˙E