Metamath Proof Explorer


Theorem dalem63

Description: Lemma for dath . Combine the cases where Y and Z are different planes with the case where Y and Z are the same plane. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem62.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem62.l ˙=K
dalem62.j ˙=joinK
dalem62.a A=AtomsK
dalem62.m ˙=meetK
dalem62.o O=LPlanesK
dalem62.y Y=P˙Q˙R
dalem62.z Z=S˙T˙U
dalem62.d D=P˙Q˙S˙T
dalem62.e E=Q˙R˙T˙U
dalem62.f F=R˙P˙U˙S
Assertion dalem63 φF˙D˙E

Proof

Step Hyp Ref Expression
1 dalem62.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem62.l ˙=K
3 dalem62.j ˙=joinK
4 dalem62.a A=AtomsK
5 dalem62.m ˙=meetK
6 dalem62.o O=LPlanesK
7 dalem62.y Y=P˙Q˙R
8 dalem62.z Z=S˙T˙U
9 dalem62.d D=P˙Q˙S˙T
10 dalem62.e E=Q˙R˙T˙U
11 dalem62.f F=R˙P˙U˙S
12 1 2 3 4 5 6 7 8 9 10 11 dalem62 φY=ZF˙D˙E
13 1 2 3 4 5 6 7 8 9 10 11 dalem16 φYZF˙D˙E
14 12 13 pm2.61dane φF˙D˙E