Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
dalemcceb
Next ⟩
dalemswapyzps
Metamath Proof Explorer
Ascii
Unicode
Theorem
dalemcceb
Description:
Lemma for
dath
. Frequently-used utility lemma.
(Contributed by
NM
, 15-Aug-2012)
Ref
Expression
Hypotheses
da.ps0
⊢
ψ
↔
c
∈
A
∧
d
∈
A
∧
¬
c
≤
˙
Y
∧
d
≠
c
∧
¬
d
≤
˙
Y
∧
C
≤
˙
c
∨
˙
d
da.a1
⊢
A
=
Atoms
⁡
K
Assertion
dalemcceb
⊢
ψ
→
c
∈
Base
K
Proof
Step
Hyp
Ref
Expression
1
da.ps0
⊢
ψ
↔
c
∈
A
∧
d
∈
A
∧
¬
c
≤
˙
Y
∧
d
≠
c
∧
¬
d
≤
˙
Y
∧
C
≤
˙
c
∨
˙
d
2
da.a1
⊢
A
=
Atoms
⁡
K
3
1
dalemccea
⊢
ψ
→
c
∈
A
4
eqid
⊢
Base
K
=
Base
K
5
4
2
atbase
⊢
c
∈
A
→
c
∈
Base
K
6
3
5
syl
⊢
ψ
→
c
∈
Base
K