Metamath Proof Explorer


Theorem dalemclccjdd

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypothesis da.ps0 ψcAdA¬c˙Ydc¬d˙YC˙c˙d
Assertion dalemclccjdd ψC˙c˙d

Proof

Step Hyp Ref Expression
1 da.ps0 ψcAdA¬c˙Ydc¬d˙YC˙c˙d
2 simp33 cAdA¬c˙Ydc¬d˙YC˙c˙dC˙c˙d
3 1 2 sylbi ψC˙c˙d