Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
dalemclccjdd
Next ⟩
dalemcceb
Metamath Proof Explorer
Ascii
Unicode
Theorem
dalemclccjdd
Description:
Lemma for
dath
. Frequently-used utility lemma.
(Contributed by
NM
, 15-Aug-2012)
Ref
Expression
Hypothesis
da.ps0
⊢
ψ
↔
c
∈
A
∧
d
∈
A
∧
¬
c
≤
˙
Y
∧
d
≠
c
∧
¬
d
≤
˙
Y
∧
C
≤
˙
c
∨
˙
d
Assertion
dalemclccjdd
⊢
ψ
→
C
≤
˙
c
∨
˙
d
Proof
Step
Hyp
Ref
Expression
1
da.ps0
⊢
ψ
↔
c
∈
A
∧
d
∈
A
∧
¬
c
≤
˙
Y
∧
d
≠
c
∧
¬
d
≤
˙
Y
∧
C
≤
˙
c
∨
˙
d
2
simp33
⊢
c
∈
A
∧
d
∈
A
∧
¬
c
≤
˙
Y
∧
d
≠
c
∧
¬
d
≤
˙
Y
∧
C
≤
˙
c
∨
˙
d
→
C
≤
˙
c
∨
˙
d
3
1
2
sylbi
⊢
ψ
→
C
≤
˙
c
∨
˙
d