Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
dalemreb
Next ⟩
dalemseb
Metamath Proof Explorer
Ascii
Unicode
Theorem
dalemreb
Description:
Lemma for
dath
. Frequently-used utility lemma.
(Contributed by
NM
, 13-Aug-2012)
Ref
Expression
Hypotheses
dalema.ph
⊢
φ
↔
K
∈
HL
∧
C
∈
Base
K
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
T
∈
A
∧
U
∈
A
∧
Y
∈
O
∧
Z
∈
O
∧
¬
C
≤
˙
P
∨
˙
Q
∧
¬
C
≤
˙
Q
∨
˙
R
∧
¬
C
≤
˙
R
∨
˙
P
∧
¬
C
≤
˙
S
∨
˙
T
∧
¬
C
≤
˙
T
∨
˙
U
∧
¬
C
≤
˙
U
∨
˙
S
∧
C
≤
˙
P
∨
˙
S
∧
C
≤
˙
Q
∨
˙
T
∧
C
≤
˙
R
∨
˙
U
dalema.a
⊢
A
=
Atoms
⁡
K
Assertion
dalemreb
⊢
φ
→
R
∈
Base
K
Proof
Step
Hyp
Ref
Expression
1
dalema.ph
⊢
φ
↔
K
∈
HL
∧
C
∈
Base
K
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
T
∈
A
∧
U
∈
A
∧
Y
∈
O
∧
Z
∈
O
∧
¬
C
≤
˙
P
∨
˙
Q
∧
¬
C
≤
˙
Q
∨
˙
R
∧
¬
C
≤
˙
R
∨
˙
P
∧
¬
C
≤
˙
S
∨
˙
T
∧
¬
C
≤
˙
T
∨
˙
U
∧
¬
C
≤
˙
U
∨
˙
S
∧
C
≤
˙
P
∨
˙
S
∧
C
≤
˙
Q
∨
˙
T
∧
C
≤
˙
R
∨
˙
U
2
dalema.a
⊢
A
=
Atoms
⁡
K
3
1
dalemrea
⊢
φ
→
R
∈
A
4
eqid
⊢
Base
K
=
Base
K
5
4
2
atbase
⊢
R
∈
A
→
R
∈
Base
K
6
3
5
syl
⊢
φ
→
R
∈
Base
K