Metamath Proof Explorer


Theorem decbin3

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A0
Assertion decbin3 4A+3=22A+1+1

Proof

Step Hyp Ref Expression
1 decbin.1 A0
2 4nn0 40
3 2nn0 20
4 2p1e3 2+1=3
5 1 decbin2 4A+2=22A+1
6 5 eqcomi 22A+1=4A+2
7 2 1 3 4 6 numsuc 22A+1+1=4A+3
8 7 eqcomi 4A+3=22A+1+1