Metamath Proof Explorer


Definition df-addr

Description: Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion df-addr +r=xV,yVvxv+yv

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplusr class+r
1 vx setvarx
2 cvv classV
3 vy setvary
4 vv setvarv
5 cr class
6 1 cv setvarx
7 4 cv setvarv
8 7 6 cfv classxv
9 caddc class+
10 3 cv setvary
11 7 10 cfv classyv
12 8 11 9 co classxv+yv
13 4 5 12 cmpt classvxv+yv
14 1 3 2 2 13 cmpo classxV,yVvxv+yv
15 0 14 wceq wff+r=xV,yVvxv+yv