Database BASIC REAL AND COMPLEX FUNCTIONS Basic number theory Number-theoretical functions df-chp  
				
		 
		
			
		 
		Description:   Define the second Chebyshev function, which adds up the logarithms of
       the primes corresponding to the prime powers less than x  , see
       definition in ApostolNT  p. 75.  (Contributed by Mario Carneiro , 7-Apr-2016) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-chp   ⊢   ψ  =    x  ∈   ℝ   ⟼  ∑  n  =   1     x  Λ  ⁡  n           
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cchp  class  ψ    
						
							1 
								
							 
							vx  setvar  x    
						
							2 
								
							 
							cr  class   ℝ     
						
							3 
								
							 
							vn  setvar  n    
						
							4 
								
							 
							c1  class   1     
						
							5 
								
							 
							cfz  class  …    
						
							6 
								
							 
							cfl  class  .    
						
							7 
								1 
							 
							cv  setvar  x    
						
							8 
								7  6 
							 
							cfv  class  x    
						
							9 
								4  8  5 
							 
							co  class   1   …  x    
						
							10 
								
							 
							cvma  class  Λ    
						
							11 
								3 
							 
							cv  setvar  n    
						
							12 
								11  10 
							 
							cfv  class   Λ  ⁡  n     
						
							13 
								9  12  3 
							 
							csu  class  ∑  n  =   1     x  Λ  ⁡  n      
						
							14 
								1  2  13 
							 
							cmpt  class    x  ∈   ℝ   ⟼  ∑  n  =   1     x  Λ  ⁡  n        
						
							15 
								0  14 
							 
							wceq  wff   ψ  =    x  ∈   ℝ   ⟼  ∑  n  =   1     x  Λ  ⁡  n