Metamath Proof Explorer


Definition df-cnvrefrel

Description: Define the converse reflexive relation predicate (read: R is a converse reflexive relation), see also the comment of dfcnvrefrel3 . Alternate definitions are dfcnvrefrel2 and dfcnvrefrel3 . (Contributed by Peter Mazsa, 16-Jul-2021)

Ref Expression
Assertion df-cnvrefrel CnvRefRel R R dom R × ran R I dom R × ran R Rel R

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 0 wcnvrefrel wff CnvRefRel R
2 0 cdm class dom R
3 0 crn class ran R
4 2 3 cxp class dom R × ran R
5 0 4 cin class R dom R × ran R
6 cid class I
7 6 4 cin class I dom R × ran R
8 5 7 wss wff R dom R × ran R I dom R × ran R
9 0 wrel wff Rel R
10 8 9 wa wff R dom R × ran R I dom R × ran R Rel R
11 1 10 wb wff CnvRefRel R R dom R × ran R I dom R × ran R Rel R