Metamath Proof Explorer


Definition df-cnvrefrel

Description: Define the converse reflexive relation predicate (read: R is a converse reflexive relation), see also the comment of dfcnvrefrel3 . Alternate definitions are dfcnvrefrel2 and dfcnvrefrel3 . (Contributed by Peter Mazsa, 16-Jul-2021)

Ref Expression
Assertion df-cnvrefrel CnvRefRelRRdomR×ranRIdomR×ranRRelR

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 wcnvrefrel wffCnvRefRelR
2 0 cdm classdomR
3 0 crn classranR
4 2 3 cxp classdomR×ranR
5 0 4 cin classRdomR×ranR
6 cid classI
7 6 4 cin classIdomR×ranR
8 5 7 wss wffRdomR×ranRIdomR×ranR
9 0 wrel wffRelR
10 8 9 wa wffRdomR×ranRIdomR×ranRRelR
11 1 10 wb wffCnvRefRelRRdomR×ranRIdomR×ranRRelR