Metamath Proof Explorer


Definition df-com2

Description: A device to add commutativity to various sorts of rings. I use ran g because I suppose g has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)

Ref Expression
Assertion df-com2 Com2=gh|arangbrangahb=bha

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccm2 classCom2
1 vg setvarg
2 vh setvarh
3 va setvara
4 1 cv setvarg
5 4 crn classrang
6 vb setvarb
7 3 cv setvara
8 2 cv setvarh
9 6 cv setvarb
10 7 9 8 co classahb
11 9 7 8 co classbha
12 10 11 wceq wffahb=bha
13 12 6 5 wral wffbrangahb=bha
14 13 3 5 wral wffarangbrangahb=bha
15 14 1 2 copab classgh|arangbrangahb=bha
16 0 15 wceq wffCom2=gh|arangbrangahb=bha