Metamath Proof Explorer


Definition df-fin3

Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin3 FinIII=x|𝒫xFinIV

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin3 classFinIII
1 vx setvarx
2 1 cv setvarx
3 2 cpw class𝒫x
4 cfin4 classFinIV
5 3 4 wcel wff𝒫xFinIV
6 5 1 cab classx|𝒫xFinIV
7 0 6 wceq wffFinIII=x|𝒫xFinIV