Metamath Proof Explorer


Definition df-hof

Description: Define the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from ( oppCatC ) X. C to SetCat , whose object part is the hom-function Hom , and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-hof Hom F = c Cat Hom 𝑓 c Base c / b x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f

Detailed syntax breakdown

Step Hyp Ref Expression
0 chof class Hom F
1 vc setvar c
2 ccat class Cat
3 chomf class Hom 𝑓
4 1 cv setvar c
5 4 3 cfv class Hom 𝑓 c
6 cbs class Base
7 4 6 cfv class Base c
8 vb setvar b
9 vx setvar x
10 8 cv setvar b
11 10 10 cxp class b × b
12 vy setvar y
13 vf setvar f
14 c1st class 1 st
15 12 cv setvar y
16 15 14 cfv class 1 st y
17 chom class Hom
18 4 17 cfv class Hom c
19 9 cv setvar x
20 19 14 cfv class 1 st x
21 16 20 18 co class 1 st y Hom c 1 st x
22 vg setvar g
23 c2nd class 2 nd
24 19 23 cfv class 2 nd x
25 15 23 cfv class 2 nd y
26 24 25 18 co class 2 nd x Hom c 2 nd y
27 vh setvar h
28 19 18 cfv class Hom c x
29 22 cv setvar g
30 cco class comp
31 4 30 cfv class comp c
32 19 25 31 co class x comp c 2 nd y
33 27 cv setvar h
34 29 33 32 co class g x comp c 2 nd y h
35 16 20 cop class 1 st y 1 st x
36 35 25 31 co class 1 st y 1 st x comp c 2 nd y
37 13 cv setvar f
38 34 37 36 co class g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
39 27 28 38 cmpt class h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
40 13 22 21 26 39 cmpo class f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
41 9 12 11 11 40 cmpo class x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
42 8 7 41 csb class Base c / b x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
43 5 42 cop class Hom 𝑓 c Base c / b x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
44 1 2 43 cmpt class c Cat Hom 𝑓 c Base c / b x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f
45 0 44 wceq wff Hom F = c Cat Hom 𝑓 c Base c / b x b × b , y b × b f 1 st y Hom c 1 st x , g 2 nd x Hom c 2 nd y h Hom c x g x comp c 2 nd y h 1 st y 1 st x comp c 2 nd y f