| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chof |
|- HomF |
| 1 |
|
vc |
|- c |
| 2 |
|
ccat |
|- Cat |
| 3 |
|
chomf |
|- Homf |
| 4 |
1
|
cv |
|- c |
| 5 |
4 3
|
cfv |
|- ( Homf ` c ) |
| 6 |
|
cbs |
|- Base |
| 7 |
4 6
|
cfv |
|- ( Base ` c ) |
| 8 |
|
vb |
|- b |
| 9 |
|
vx |
|- x |
| 10 |
8
|
cv |
|- b |
| 11 |
10 10
|
cxp |
|- ( b X. b ) |
| 12 |
|
vy |
|- y |
| 13 |
|
vf |
|- f |
| 14 |
|
c1st |
|- 1st |
| 15 |
12
|
cv |
|- y |
| 16 |
15 14
|
cfv |
|- ( 1st ` y ) |
| 17 |
|
chom |
|- Hom |
| 18 |
4 17
|
cfv |
|- ( Hom ` c ) |
| 19 |
9
|
cv |
|- x |
| 20 |
19 14
|
cfv |
|- ( 1st ` x ) |
| 21 |
16 20 18
|
co |
|- ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) |
| 22 |
|
vg |
|- g |
| 23 |
|
c2nd |
|- 2nd |
| 24 |
19 23
|
cfv |
|- ( 2nd ` x ) |
| 25 |
15 23
|
cfv |
|- ( 2nd ` y ) |
| 26 |
24 25 18
|
co |
|- ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |
| 27 |
|
vh |
|- h |
| 28 |
19 18
|
cfv |
|- ( ( Hom ` c ) ` x ) |
| 29 |
22
|
cv |
|- g |
| 30 |
|
cco |
|- comp |
| 31 |
4 30
|
cfv |
|- ( comp ` c ) |
| 32 |
19 25 31
|
co |
|- ( x ( comp ` c ) ( 2nd ` y ) ) |
| 33 |
27
|
cv |
|- h |
| 34 |
29 33 32
|
co |
|- ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) |
| 35 |
16 20
|
cop |
|- <. ( 1st ` y ) , ( 1st ` x ) >. |
| 36 |
35 25 31
|
co |
|- ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) |
| 37 |
13
|
cv |
|- f |
| 38 |
34 37 36
|
co |
|- ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) |
| 39 |
27 28 38
|
cmpt |
|- ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) |
| 40 |
13 22 21 26 39
|
cmpo |
|- ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) |
| 41 |
9 12 11 11 40
|
cmpo |
|- ( x e. ( b X. b ) , y e. ( b X. b ) |-> ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) ) |
| 42 |
8 7 41
|
csb |
|- [_ ( Base ` c ) / b ]_ ( x e. ( b X. b ) , y e. ( b X. b ) |-> ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) ) |
| 43 |
5 42
|
cop |
|- <. ( Homf ` c ) , [_ ( Base ` c ) / b ]_ ( x e. ( b X. b ) , y e. ( b X. b ) |-> ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) ) >. |
| 44 |
1 2 43
|
cmpt |
|- ( c e. Cat |-> <. ( Homf ` c ) , [_ ( Base ` c ) / b ]_ ( x e. ( b X. b ) , y e. ( b X. b ) |-> ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 45 |
0 44
|
wceq |
|- HomF = ( c e. Cat |-> <. ( Homf ` c ) , [_ ( Base ` c ) / b ]_ ( x e. ( b X. b ) , y e. ( b X. b ) |-> ( f e. ( ( 1st ` y ) ( Hom ` c ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` c ) ` x ) |-> ( ( g ( x ( comp ` c ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` c ) ( 2nd ` y ) ) f ) ) ) ) >. ) |