Metamath Proof Explorer


Definition df-idl

Description: Define the class of (two-sided) ideals of a ring R . A subset of R is an ideal if it contains 0 , is closed under addition, and is closed under multiplication on either side by any element of R . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-idl Idl = r RingOps i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i

Detailed syntax breakdown

Step Hyp Ref Expression
0 cidl class Idl
1 vr setvar r
2 crngo class RingOps
3 vi setvar i
4 c1st class 1 st
5 1 cv setvar r
6 5 4 cfv class 1 st r
7 6 crn class ran 1 st r
8 7 cpw class 𝒫 ran 1 st r
9 cgi class GId
10 6 9 cfv class GId 1 st r
11 3 cv setvar i
12 10 11 wcel wff GId 1 st r i
13 vx setvar x
14 vy setvar y
15 13 cv setvar x
16 14 cv setvar y
17 15 16 6 co class x 1 st r y
18 17 11 wcel wff x 1 st r y i
19 18 14 11 wral wff y i x 1 st r y i
20 vz setvar z
21 20 cv setvar z
22 c2nd class 2 nd
23 5 22 cfv class 2 nd r
24 21 15 23 co class z 2 nd r x
25 24 11 wcel wff z 2 nd r x i
26 15 21 23 co class x 2 nd r z
27 26 11 wcel wff x 2 nd r z i
28 25 27 wa wff z 2 nd r x i x 2 nd r z i
29 28 20 7 wral wff z ran 1 st r z 2 nd r x i x 2 nd r z i
30 19 29 wa wff y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
31 30 13 11 wral wff x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
32 12 31 wa wff GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
33 32 3 8 crab class i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
34 1 2 33 cmpt class r RingOps i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
35 0 34 wceq wff Idl = r RingOps i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i