| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cidl |
|- Idl |
| 1 |
|
vr |
|- r |
| 2 |
|
crngo |
|- RingOps |
| 3 |
|
vi |
|- i |
| 4 |
|
c1st |
|- 1st |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( 1st ` r ) |
| 7 |
6
|
crn |
|- ran ( 1st ` r ) |
| 8 |
7
|
cpw |
|- ~P ran ( 1st ` r ) |
| 9 |
|
cgi |
|- GId |
| 10 |
6 9
|
cfv |
|- ( GId ` ( 1st ` r ) ) |
| 11 |
3
|
cv |
|- i |
| 12 |
10 11
|
wcel |
|- ( GId ` ( 1st ` r ) ) e. i |
| 13 |
|
vx |
|- x |
| 14 |
|
vy |
|- y |
| 15 |
13
|
cv |
|- x |
| 16 |
14
|
cv |
|- y |
| 17 |
15 16 6
|
co |
|- ( x ( 1st ` r ) y ) |
| 18 |
17 11
|
wcel |
|- ( x ( 1st ` r ) y ) e. i |
| 19 |
18 14 11
|
wral |
|- A. y e. i ( x ( 1st ` r ) y ) e. i |
| 20 |
|
vz |
|- z |
| 21 |
20
|
cv |
|- z |
| 22 |
|
c2nd |
|- 2nd |
| 23 |
5 22
|
cfv |
|- ( 2nd ` r ) |
| 24 |
21 15 23
|
co |
|- ( z ( 2nd ` r ) x ) |
| 25 |
24 11
|
wcel |
|- ( z ( 2nd ` r ) x ) e. i |
| 26 |
15 21 23
|
co |
|- ( x ( 2nd ` r ) z ) |
| 27 |
26 11
|
wcel |
|- ( x ( 2nd ` r ) z ) e. i |
| 28 |
25 27
|
wa |
|- ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) |
| 29 |
28 20 7
|
wral |
|- A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) |
| 30 |
19 29
|
wa |
|- ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) |
| 31 |
30 13 11
|
wral |
|- A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) |
| 32 |
12 31
|
wa |
|- ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) |
| 33 |
32 3 8
|
crab |
|- { i e. ~P ran ( 1st ` r ) | ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) } |
| 34 |
1 2 33
|
cmpt |
|- ( r e. RingOps |-> { i e. ~P ran ( 1st ` r ) | ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) } ) |
| 35 |
0 34
|
wceq |
|- Idl = ( r e. RingOps |-> { i e. ~P ran ( 1st ` r ) | ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) } ) |