| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpridl |
|- PrIdl |
| 1 |
|
vr |
|- r |
| 2 |
|
crngo |
|- RingOps |
| 3 |
|
vi |
|- i |
| 4 |
|
cidl |
|- Idl |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Idl ` r ) |
| 7 |
3
|
cv |
|- i |
| 8 |
|
c1st |
|- 1st |
| 9 |
5 8
|
cfv |
|- ( 1st ` r ) |
| 10 |
9
|
crn |
|- ran ( 1st ` r ) |
| 11 |
7 10
|
wne |
|- i =/= ran ( 1st ` r ) |
| 12 |
|
va |
|- a |
| 13 |
|
vb |
|- b |
| 14 |
|
vx |
|- x |
| 15 |
12
|
cv |
|- a |
| 16 |
|
vy |
|- y |
| 17 |
13
|
cv |
|- b |
| 18 |
14
|
cv |
|- x |
| 19 |
|
c2nd |
|- 2nd |
| 20 |
5 19
|
cfv |
|- ( 2nd ` r ) |
| 21 |
16
|
cv |
|- y |
| 22 |
18 21 20
|
co |
|- ( x ( 2nd ` r ) y ) |
| 23 |
22 7
|
wcel |
|- ( x ( 2nd ` r ) y ) e. i |
| 24 |
23 16 17
|
wral |
|- A. y e. b ( x ( 2nd ` r ) y ) e. i |
| 25 |
24 14 15
|
wral |
|- A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i |
| 26 |
15 7
|
wss |
|- a C_ i |
| 27 |
17 7
|
wss |
|- b C_ i |
| 28 |
26 27
|
wo |
|- ( a C_ i \/ b C_ i ) |
| 29 |
25 28
|
wi |
|- ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) |
| 30 |
29 13 6
|
wral |
|- A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) |
| 31 |
30 12 6
|
wral |
|- A. a e. ( Idl ` r ) A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) |
| 32 |
11 31
|
wa |
|- ( i =/= ran ( 1st ` r ) /\ A. a e. ( Idl ` r ) A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) |
| 33 |
32 3 6
|
crab |
|- { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. a e. ( Idl ` r ) A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } |
| 34 |
1 2 33
|
cmpt |
|- ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. a e. ( Idl ` r ) A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) |
| 35 |
0 34
|
wceq |
|- PrIdl = ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. a e. ( Idl ` r ) A. b e. ( Idl ` r ) ( A. x e. a A. y e. b ( x ( 2nd ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) |