Metamath Proof Explorer


Definition df-pridl

Description: Define the class of prime ideals of a ring R . A proper ideal I of R is prime if whenever A B C_ I for ideals A and B , either A C_ I or B C_ I . The more familiar definition using elements rather than ideals is equivalent provided R is commutative; see ispridl2 and ispridlc . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-pridl PrIdl = ( 𝑟 ∈ RingOps ↦ { 𝑖 ∈ ( Idl ‘ 𝑟 ) ∣ ( 𝑖 ≠ ran ( 1st𝑟 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpridl PrIdl
1 vr 𝑟
2 crngo RingOps
3 vi 𝑖
4 cidl Idl
5 1 cv 𝑟
6 5 4 cfv ( Idl ‘ 𝑟 )
7 3 cv 𝑖
8 c1st 1st
9 5 8 cfv ( 1st𝑟 )
10 9 crn ran ( 1st𝑟 )
11 7 10 wne 𝑖 ≠ ran ( 1st𝑟 )
12 va 𝑎
13 vb 𝑏
14 vx 𝑥
15 12 cv 𝑎
16 vy 𝑦
17 13 cv 𝑏
18 14 cv 𝑥
19 c2nd 2nd
20 5 19 cfv ( 2nd𝑟 )
21 16 cv 𝑦
22 18 21 20 co ( 𝑥 ( 2nd𝑟 ) 𝑦 )
23 22 7 wcel ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖
24 23 16 17 wral 𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖
25 24 14 15 wral 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖
26 15 7 wss 𝑎𝑖
27 17 7 wss 𝑏𝑖
28 26 27 wo ( 𝑎𝑖𝑏𝑖 )
29 25 28 wi ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
30 29 13 6 wral 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
31 30 12 6 wral 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
32 11 31 wa ( 𝑖 ≠ ran ( 1st𝑟 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) )
33 32 3 6 crab { 𝑖 ∈ ( Idl ‘ 𝑟 ) ∣ ( 𝑖 ≠ ran ( 1st𝑟 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) }
34 1 2 33 cmpt ( 𝑟 ∈ RingOps ↦ { 𝑖 ∈ ( Idl ‘ 𝑟 ) ∣ ( 𝑖 ≠ ran ( 1st𝑟 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )
35 0 34 wceq PrIdl = ( 𝑟 ∈ RingOps ↦ { 𝑖 ∈ ( Idl ‘ 𝑟 ) ∣ ( 𝑖 ≠ ran ( 1st𝑟 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑟 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )