| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmaxidl |
|- MaxIdl |
| 1 |
|
vr |
|- r |
| 2 |
|
crngo |
|- RingOps |
| 3 |
|
vi |
|- i |
| 4 |
|
cidl |
|- Idl |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Idl ` r ) |
| 7 |
3
|
cv |
|- i |
| 8 |
|
c1st |
|- 1st |
| 9 |
5 8
|
cfv |
|- ( 1st ` r ) |
| 10 |
9
|
crn |
|- ran ( 1st ` r ) |
| 11 |
7 10
|
wne |
|- i =/= ran ( 1st ` r ) |
| 12 |
|
vj |
|- j |
| 13 |
12
|
cv |
|- j |
| 14 |
7 13
|
wss |
|- i C_ j |
| 15 |
13 7
|
wceq |
|- j = i |
| 16 |
13 10
|
wceq |
|- j = ran ( 1st ` r ) |
| 17 |
15 16
|
wo |
|- ( j = i \/ j = ran ( 1st ` r ) ) |
| 18 |
14 17
|
wi |
|- ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) |
| 19 |
18 12 6
|
wral |
|- A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) |
| 20 |
11 19
|
wa |
|- ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) |
| 21 |
20 3 6
|
crab |
|- { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } |
| 22 |
1 2 21
|
cmpt |
|- ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } ) |
| 23 |
0 22
|
wceq |
|- MaxIdl = ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } ) |