Metamath Proof Explorer


Definition df-maxidl

Description: Define the class of maximal ideals of a ring R . A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion df-maxidl MaxIdl=rRingOpsiIdlr|iran1strjIdlrijj=ij=ran1str

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmaxidl classMaxIdl
1 vr setvarr
2 crngo classRingOps
3 vi setvari
4 cidl classIdl
5 1 cv setvarr
6 5 4 cfv classIdlr
7 3 cv setvari
8 c1st class1st
9 5 8 cfv class1str
10 9 crn classran1str
11 7 10 wne wffiran1str
12 vj setvarj
13 12 cv setvarj
14 7 13 wss wffij
15 13 7 wceq wffj=i
16 13 10 wceq wffj=ran1str
17 15 16 wo wffj=ij=ran1str
18 14 17 wi wffijj=ij=ran1str
19 18 12 6 wral wffjIdlrijj=ij=ran1str
20 11 19 wa wffiran1strjIdlrijj=ij=ran1str
21 20 3 6 crab classiIdlr|iran1strjIdlrijj=ij=ran1str
22 1 2 21 cmpt classrRingOpsiIdlr|iran1strjIdlrijj=ij=ran1str
23 0 22 wceq wffMaxIdl=rRingOpsiIdlr|iran1strjIdlrijj=ij=ran1str