Description: Define the class of maximal ideals of a ring R . A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-maxidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmaxidl | |
|
1 | vr | |
|
2 | crngo | |
|
3 | vi | |
|
4 | cidl | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | 3 | cv | |
8 | c1st | |
|
9 | 5 8 | cfv | |
10 | 9 | crn | |
11 | 7 10 | wne | |
12 | vj | |
|
13 | 12 | cv | |
14 | 7 13 | wss | |
15 | 13 7 | wceq | |
16 | 13 10 | wceq | |
17 | 15 16 | wo | |
18 | 14 17 | wi | |
19 | 18 12 6 | wral | |
20 | 11 19 | wa | |
21 | 20 3 6 | crab | |
22 | 1 2 21 | cmpt | |
23 | 0 22 | wceq | |