Metamath Proof Explorer


Theorem idlval

Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlval.1 G=1stR
idlval.2 H=2ndR
idlval.3 X=ranG
idlval.4 Z=GIdG
Assertion idlval RRingOpsIdlR=i𝒫X|ZixiyixGyizXzHxixHzi

Proof

Step Hyp Ref Expression
1 idlval.1 G=1stR
2 idlval.2 H=2ndR
3 idlval.3 X=ranG
4 idlval.4 Z=GIdG
5 fveq2 r=R1str=1stR
6 5 1 eqtr4di r=R1str=G
7 6 rneqd r=Rran1str=ranG
8 7 3 eqtr4di r=Rran1str=X
9 8 pweqd r=R𝒫ran1str=𝒫X
10 6 fveq2d r=RGId1str=GIdG
11 10 4 eqtr4di r=RGId1str=Z
12 11 eleq1d r=RGId1striZi
13 6 oveqd r=Rx1stry=xGy
14 13 eleq1d r=Rx1stryixGyi
15 14 ralbidv r=Ryix1stryiyixGyi
16 fveq2 r=R2ndr=2ndR
17 16 2 eqtr4di r=R2ndr=H
18 17 oveqd r=Rz2ndrx=zHx
19 18 eleq1d r=Rz2ndrxizHxi
20 17 oveqd r=Rx2ndrz=xHz
21 20 eleq1d r=Rx2ndrzixHzi
22 19 21 anbi12d r=Rz2ndrxix2ndrzizHxixHzi
23 8 22 raleqbidv r=Rzran1strz2ndrxix2ndrzizXzHxixHzi
24 15 23 anbi12d r=Ryix1stryizran1strz2ndrxix2ndrziyixGyizXzHxixHzi
25 24 ralbidv r=Rxiyix1stryizran1strz2ndrxix2ndrzixiyixGyizXzHxixHzi
26 12 25 anbi12d r=RGId1strixiyix1stryizran1strz2ndrxix2ndrziZixiyixGyizXzHxixHzi
27 9 26 rabeqbidv r=Ri𝒫ran1str|GId1strixiyix1stryizran1strz2ndrxix2ndrzi=i𝒫X|ZixiyixGyizXzHxixHzi
28 df-idl Idl=rRingOpsi𝒫ran1str|GId1strixiyix1stryizran1strz2ndrxix2ndrzi
29 1 fvexi GV
30 29 rnex ranGV
31 3 30 eqeltri XV
32 31 pwex 𝒫XV
33 32 rabex i𝒫X|ZixiyixGyizXzHxixHziV
34 27 28 33 fvmpt RRingOpsIdlR=i𝒫X|ZixiyixGyizXzHxixHzi