Metamath Proof Explorer


Theorem idlval

Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlval.1 G = 1 st R
idlval.2 H = 2 nd R
idlval.3 X = ran G
idlval.4 Z = GId G
Assertion idlval R RingOps Idl R = i 𝒫 X | Z i x i y i x G y i z X z H x i x H z i

Proof

Step Hyp Ref Expression
1 idlval.1 G = 1 st R
2 idlval.2 H = 2 nd R
3 idlval.3 X = ran G
4 idlval.4 Z = GId G
5 fveq2 r = R 1 st r = 1 st R
6 5 1 eqtr4di r = R 1 st r = G
7 6 rneqd r = R ran 1 st r = ran G
8 7 3 eqtr4di r = R ran 1 st r = X
9 8 pweqd r = R 𝒫 ran 1 st r = 𝒫 X
10 6 fveq2d r = R GId 1 st r = GId G
11 10 4 eqtr4di r = R GId 1 st r = Z
12 11 eleq1d r = R GId 1 st r i Z i
13 6 oveqd r = R x 1 st r y = x G y
14 13 eleq1d r = R x 1 st r y i x G y i
15 14 ralbidv r = R y i x 1 st r y i y i x G y i
16 fveq2 r = R 2 nd r = 2 nd R
17 16 2 eqtr4di r = R 2 nd r = H
18 17 oveqd r = R z 2 nd r x = z H x
19 18 eleq1d r = R z 2 nd r x i z H x i
20 17 oveqd r = R x 2 nd r z = x H z
21 20 eleq1d r = R x 2 nd r z i x H z i
22 19 21 anbi12d r = R z 2 nd r x i x 2 nd r z i z H x i x H z i
23 8 22 raleqbidv r = R z ran 1 st r z 2 nd r x i x 2 nd r z i z X z H x i x H z i
24 15 23 anbi12d r = R y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i y i x G y i z X z H x i x H z i
25 24 ralbidv r = R x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i x i y i x G y i z X z H x i x H z i
26 12 25 anbi12d r = R GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i Z i x i y i x G y i z X z H x i x H z i
27 9 26 rabeqbidv r = R i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i = i 𝒫 X | Z i x i y i x G y i z X z H x i x H z i
28 df-idl Idl = r RingOps i 𝒫 ran 1 st r | GId 1 st r i x i y i x 1 st r y i z ran 1 st r z 2 nd r x i x 2 nd r z i
29 1 fvexi G V
30 29 rnex ran G V
31 3 30 eqeltri X V
32 31 pwex 𝒫 X V
33 32 rabex i 𝒫 X | Z i x i y i x G y i z X z H x i x H z i V
34 27 28 33 fvmpt R RingOps Idl R = i 𝒫 X | Z i x i y i x G y i z X z H x i x H z i