Step |
Hyp |
Ref |
Expression |
1 |
|
idlval.1 |
|- G = ( 1st ` R ) |
2 |
|
idlval.2 |
|- H = ( 2nd ` R ) |
3 |
|
idlval.3 |
|- X = ran G |
4 |
|
idlval.4 |
|- Z = ( GId ` G ) |
5 |
|
fveq2 |
|- ( r = R -> ( 1st ` r ) = ( 1st ` R ) ) |
6 |
5 1
|
eqtr4di |
|- ( r = R -> ( 1st ` r ) = G ) |
7 |
6
|
rneqd |
|- ( r = R -> ran ( 1st ` r ) = ran G ) |
8 |
7 3
|
eqtr4di |
|- ( r = R -> ran ( 1st ` r ) = X ) |
9 |
8
|
pweqd |
|- ( r = R -> ~P ran ( 1st ` r ) = ~P X ) |
10 |
6
|
fveq2d |
|- ( r = R -> ( GId ` ( 1st ` r ) ) = ( GId ` G ) ) |
11 |
10 4
|
eqtr4di |
|- ( r = R -> ( GId ` ( 1st ` r ) ) = Z ) |
12 |
11
|
eleq1d |
|- ( r = R -> ( ( GId ` ( 1st ` r ) ) e. i <-> Z e. i ) ) |
13 |
6
|
oveqd |
|- ( r = R -> ( x ( 1st ` r ) y ) = ( x G y ) ) |
14 |
13
|
eleq1d |
|- ( r = R -> ( ( x ( 1st ` r ) y ) e. i <-> ( x G y ) e. i ) ) |
15 |
14
|
ralbidv |
|- ( r = R -> ( A. y e. i ( x ( 1st ` r ) y ) e. i <-> A. y e. i ( x G y ) e. i ) ) |
16 |
|
fveq2 |
|- ( r = R -> ( 2nd ` r ) = ( 2nd ` R ) ) |
17 |
16 2
|
eqtr4di |
|- ( r = R -> ( 2nd ` r ) = H ) |
18 |
17
|
oveqd |
|- ( r = R -> ( z ( 2nd ` r ) x ) = ( z H x ) ) |
19 |
18
|
eleq1d |
|- ( r = R -> ( ( z ( 2nd ` r ) x ) e. i <-> ( z H x ) e. i ) ) |
20 |
17
|
oveqd |
|- ( r = R -> ( x ( 2nd ` r ) z ) = ( x H z ) ) |
21 |
20
|
eleq1d |
|- ( r = R -> ( ( x ( 2nd ` r ) z ) e. i <-> ( x H z ) e. i ) ) |
22 |
19 21
|
anbi12d |
|- ( r = R -> ( ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) <-> ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) |
23 |
8 22
|
raleqbidv |
|- ( r = R -> ( A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) <-> A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) |
24 |
15 23
|
anbi12d |
|- ( r = R -> ( ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) <-> ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) ) |
25 |
24
|
ralbidv |
|- ( r = R -> ( A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) <-> A. x e. i ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) ) |
26 |
12 25
|
anbi12d |
|- ( r = R -> ( ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) <-> ( Z e. i /\ A. x e. i ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) ) ) |
27 |
9 26
|
rabeqbidv |
|- ( r = R -> { i e. ~P ran ( 1st ` r ) | ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) } = { i e. ~P X | ( Z e. i /\ A. x e. i ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) } ) |
28 |
|
df-idl |
|- Idl = ( r e. RingOps |-> { i e. ~P ran ( 1st ` r ) | ( ( GId ` ( 1st ` r ) ) e. i /\ A. x e. i ( A. y e. i ( x ( 1st ` r ) y ) e. i /\ A. z e. ran ( 1st ` r ) ( ( z ( 2nd ` r ) x ) e. i /\ ( x ( 2nd ` r ) z ) e. i ) ) ) } ) |
29 |
1
|
fvexi |
|- G e. _V |
30 |
29
|
rnex |
|- ran G e. _V |
31 |
3 30
|
eqeltri |
|- X e. _V |
32 |
31
|
pwex |
|- ~P X e. _V |
33 |
32
|
rabex |
|- { i e. ~P X | ( Z e. i /\ A. x e. i ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) } e. _V |
34 |
27 28 33
|
fvmpt |
|- ( R e. RingOps -> ( Idl ` R ) = { i e. ~P X | ( Z e. i /\ A. x e. i ( A. y e. i ( x G y ) e. i /\ A. z e. X ( ( z H x ) e. i /\ ( x H z ) e. i ) ) ) } ) |