Metamath Proof Explorer


Theorem isidl

Description: The predicate "is an ideal of the ring R ". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlval.1 G=1stR
idlval.2 H=2ndR
idlval.3 X=ranG
idlval.4 Z=GIdG
Assertion isidl RRingOpsIIdlRIXZIxIyIxGyIzXzHxIxHzI

Proof

Step Hyp Ref Expression
1 idlval.1 G=1stR
2 idlval.2 H=2ndR
3 idlval.3 X=ranG
4 idlval.4 Z=GIdG
5 1 2 3 4 idlval RRingOpsIdlR=i𝒫X|ZixiyixGyizXzHxixHzi
6 5 eleq2d RRingOpsIIdlRIi𝒫X|ZixiyixGyizXzHxixHzi
7 1 fvexi GV
8 7 rnex ranGV
9 3 8 eqeltri XV
10 9 elpw2 I𝒫XIX
11 10 anbi1i I𝒫XZIxIyIxGyIzXzHxIxHzIIXZIxIyIxGyIzXzHxIxHzI
12 eleq2 i=IZiZI
13 eleq2 i=IxGyixGyI
14 13 raleqbi1dv i=IyixGyiyIxGyI
15 eleq2 i=IzHxizHxI
16 eleq2 i=IxHzixHzI
17 15 16 anbi12d i=IzHxixHzizHxIxHzI
18 17 ralbidv i=IzXzHxixHzizXzHxIxHzI
19 14 18 anbi12d i=IyixGyizXzHxixHziyIxGyIzXzHxIxHzI
20 19 raleqbi1dv i=IxiyixGyizXzHxixHzixIyIxGyIzXzHxIxHzI
21 12 20 anbi12d i=IZixiyixGyizXzHxixHziZIxIyIxGyIzXzHxIxHzI
22 21 elrab Ii𝒫X|ZixiyixGyizXzHxixHziI𝒫XZIxIyIxGyIzXzHxIxHzI
23 3anass IXZIxIyIxGyIzXzHxIxHzIIXZIxIyIxGyIzXzHxIxHzI
24 11 22 23 3bitr4i Ii𝒫X|ZixiyixGyizXzHxixHziIXZIxIyIxGyIzXzHxIxHzI
25 6 24 bitrdi RRingOpsIIdlRIXZIxIyIxGyIzXzHxIxHzI