Metamath Proof Explorer


Definition df-rngo

Description: Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-rngo RingOps=gh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngo classRingOps
1 vg setvarg
2 vh setvarh
3 1 cv setvarg
4 cablo classAbelOp
5 3 4 wcel wffgAbelOp
6 2 cv setvarh
7 3 crn classrang
8 7 7 cxp classrang×rang
9 8 7 6 wf wffh:rang×rangrang
10 5 9 wa wffgAbelOph:rang×rangrang
11 vx setvarx
12 vy setvary
13 vz setvarz
14 11 cv setvarx
15 12 cv setvary
16 14 15 6 co classxhy
17 13 cv setvarz
18 16 17 6 co classxhyhz
19 15 17 6 co classyhz
20 14 19 6 co classxhyhz
21 18 20 wceq wffxhyhz=xhyhz
22 15 17 3 co classygz
23 14 22 6 co classxhygz
24 14 17 6 co classxhz
25 16 24 3 co classxhygxhz
26 23 25 wceq wffxhygz=xhygxhz
27 14 15 3 co classxgy
28 27 17 6 co classxgyhz
29 24 19 3 co classxhzgyhz
30 28 29 wceq wffxgyhz=xhzgyhz
31 21 26 30 w3a wffxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhz
32 31 13 7 wral wffzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhz
33 32 12 7 wral wffyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhz
34 33 11 7 wral wffxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhz
35 16 15 wceq wffxhy=y
36 15 14 6 co classyhx
37 36 15 wceq wffyhx=y
38 35 37 wa wffxhy=yyhx=y
39 38 12 7 wral wffyrangxhy=yyhx=y
40 39 11 7 wrex wffxrangyrangxhy=yyhx=y
41 34 40 wa wffxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y
42 10 41 wa wffgAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y
43 42 1 2 copab classgh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y
44 0 43 wceq wffRingOps=gh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y