Step |
Hyp |
Ref |
Expression |
1 |
|
idlval.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
idlval.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
idlval.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
idlval.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
1 2 3 4
|
idlval |
⊢ ( 𝑅 ∈ RingOps → ( Idl ‘ 𝑅 ) = { 𝑖 ∈ 𝒫 𝑋 ∣ ( 𝑍 ∈ 𝑖 ∧ ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ) } ) |
6 |
5
|
eleq2d |
⊢ ( 𝑅 ∈ RingOps → ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ↔ 𝐼 ∈ { 𝑖 ∈ 𝒫 𝑋 ∣ ( 𝑍 ∈ 𝑖 ∧ ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ) } ) ) |
7 |
1
|
fvexi |
⊢ 𝐺 ∈ V |
8 |
7
|
rnex |
⊢ ran 𝐺 ∈ V |
9 |
3 8
|
eqeltri |
⊢ 𝑋 ∈ V |
10 |
9
|
elpw2 |
⊢ ( 𝐼 ∈ 𝒫 𝑋 ↔ 𝐼 ⊆ 𝑋 ) |
11 |
10
|
anbi1i |
⊢ ( ( 𝐼 ∈ 𝒫 𝑋 ∧ ( 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ↔ ( 𝐼 ⊆ 𝑋 ∧ ( 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑍 ∈ 𝑖 ↔ 𝑍 ∈ 𝐼 ) ) |
13 |
|
eleq2 |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ) ) |
14 |
13
|
raleqbi1dv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ) ) |
15 |
|
eleq2 |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ↔ ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ) ) |
16 |
|
eleq2 |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ↔ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ↔ ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) |
19 |
14 18
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ↔ ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) |
20 |
19
|
raleqbi1dv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) |
21 |
12 20
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑍 ∈ 𝑖 ∧ ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ) ↔ ( 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |
22 |
21
|
elrab |
⊢ ( 𝐼 ∈ { 𝑖 ∈ 𝒫 𝑋 ∣ ( 𝑍 ∈ 𝑖 ∧ ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ) } ↔ ( 𝐼 ∈ 𝒫 𝑋 ∧ ( 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |
23 |
|
3anass |
⊢ ( ( 𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ↔ ( 𝐼 ⊆ 𝑋 ∧ ( 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |
24 |
11 22 23
|
3bitr4i |
⊢ ( 𝐼 ∈ { 𝑖 ∈ 𝒫 𝑋 ∣ ( 𝑍 ∈ 𝑖 ∧ ∀ 𝑥 ∈ 𝑖 ( ∀ 𝑦 ∈ 𝑖 ( 𝑥 𝐺 𝑦 ) ∈ 𝑖 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝑖 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝑖 ) ) ) } ↔ ( 𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) |
25 |
6 24
|
bitrdi |
⊢ ( 𝑅 ∈ RingOps → ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |