Metamath Proof Explorer


Definition df-gid

Description: Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion df-gid GId=gVιurang|xrangugx=xxgu=x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgi classGId
1 vg setvarg
2 cvv classV
3 vu setvaru
4 1 cv setvarg
5 4 crn classrang
6 vx setvarx
7 3 cv setvaru
8 6 cv setvarx
9 7 8 4 co classugx
10 9 8 wceq wffugx=x
11 8 7 4 co classxgu
12 11 8 wceq wffxgu=x
13 10 12 wa wffugx=xxgu=x
14 13 6 5 wral wffxrangugx=xxgu=x
15 14 3 5 crio classιurang|xrangugx=xxgu=x
16 1 2 15 cmpt classgVιurang|xrangugx=xxgu=x
17 0 16 wceq wffGId=gVιurang|xrangugx=xxgu=x