Metamath Proof Explorer


Definition df-ginv

Description: Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006) (New usage is discouraged.)

Ref Expression
Assertion df-ginv inv=gGrpOpxrangιzrang|zgx=GIdg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgn classinv
1 vg setvarg
2 cgr classGrpOp
3 vx setvarx
4 1 cv setvarg
5 4 crn classrang
6 vz setvarz
7 6 cv setvarz
8 3 cv setvarx
9 7 8 4 co classzgx
10 cgi classGId
11 4 10 cfv classGIdg
12 9 11 wceq wffzgx=GIdg
13 12 6 5 crio classιzrang|zgx=GIdg
14 3 5 13 cmpt classxrangιzrang|zgx=GIdg
15 1 2 14 cmpt classgGrpOpxrangιzrang|zgx=GIdg
16 0 15 wceq wffinv=gGrpOpxrangιzrang|zgx=GIdg