Metamath Proof Explorer


Definition df-gdiv

Description: Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-gdiv /g=gGrpOpxrang,yrangxginvgy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgs class/g
1 vg setvarg
2 cgr classGrpOp
3 vx setvarx
4 1 cv setvarg
5 4 crn classrang
6 vy setvary
7 3 cv setvarx
8 cgn classinv
9 4 8 cfv classinvg
10 6 cv setvary
11 10 9 cfv classinvgy
12 7 11 4 co classxginvgy
13 3 6 5 5 12 cmpo classxrang,yrangxginvgy
14 1 2 13 cmpt classgGrpOpxrang,yrangxginvgy
15 0 14 wceq wff/g=gGrpOpxrang,yrangxginvgy