Metamath Proof Explorer
		
		
		Definition df-ii
		Description:  Define the unit interval with the Euclidean topology.  (Contributed by Jeff Madsen, 2-Sep-2009)  (Revised by Mario Carneiro, 3-Sep-2015)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-ii |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cii |  | 
						
							| 1 |  | cmopn |  | 
						
							| 2 |  | cabs |  | 
						
							| 3 |  | cmin |  | 
						
							| 4 | 2 3 | ccom |  | 
						
							| 5 |  | cc0 |  | 
						
							| 6 |  | cicc |  | 
						
							| 7 |  | c1 |  | 
						
							| 8 | 5 7 6 | co |  | 
						
							| 9 | 8 8 | cxp |  | 
						
							| 10 | 4 9 | cres |  | 
						
							| 11 | 10 1 | cfv |  | 
						
							| 12 | 0 11 | wceq |  |