Metamath Proof Explorer


Definition df-ii

Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion df-ii II=MetOpenabs01×01

Detailed syntax breakdown

Step Hyp Ref Expression
0 cii classII
1 cmopn classMetOpen
2 cabs classabs
3 cmin class
4 2 3 ccom classabs
5 cc0 class0
6 cicc class.
7 c1 class1
8 5 7 6 co class01
9 8 8 cxp class01×01
10 4 9 cres classabs01×01
11 10 1 cfv classMetOpenabs01×01
12 0 11 wceq wffII=MetOpenabs01×01