Description: A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clmhm | |
|
1 | vs | |
|
2 | clmod | |
|
3 | vt | |
|
4 | vf | |
|
5 | 1 | cv | |
6 | cghm | |
|
7 | 3 | cv | |
8 | 5 7 6 | co | |
9 | csca | |
|
10 | 5 9 | cfv | |
11 | vw | |
|
12 | 7 9 | cfv | |
13 | 11 | cv | |
14 | 12 13 | wceq | |
15 | vx | |
|
16 | cbs | |
|
17 | 13 16 | cfv | |
18 | vy | |
|
19 | 5 16 | cfv | |
20 | 4 | cv | |
21 | 15 | cv | |
22 | cvsca | |
|
23 | 5 22 | cfv | |
24 | 18 | cv | |
25 | 21 24 23 | co | |
26 | 25 20 | cfv | |
27 | 7 22 | cfv | |
28 | 24 20 | cfv | |
29 | 21 28 27 | co | |
30 | 26 29 | wceq | |
31 | 30 18 19 | wral | |
32 | 31 15 17 | wral | |
33 | 14 32 | wa | |
34 | 33 11 10 | wsbc | |
35 | 34 4 8 | crab | |
36 | 1 3 2 2 35 | cmpo | |
37 | 0 36 | wceq | |