Metamath Proof Explorer


Definition df-lmhm

Description: A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion df-lmhm LMHom=sLMod,tLModfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmhm classLMHom
1 vs setvars
2 clmod classLMod
3 vt setvart
4 vf setvarf
5 1 cv setvars
6 cghm classGrpHom
7 3 cv setvart
8 5 7 6 co classsGrpHomt
9 csca classScalar
10 5 9 cfv classScalars
11 vw setvarw
12 7 9 cfv classScalart
13 11 cv setvarw
14 12 13 wceq wffScalart=w
15 vx setvarx
16 cbs classBase
17 13 16 cfv classBasew
18 vy setvary
19 5 16 cfv classBases
20 4 cv setvarf
21 15 cv setvarx
22 cvsca class𝑠
23 5 22 cfv classs
24 18 cv setvary
25 21 24 23 co classxsy
26 25 20 cfv classfxsy
27 7 22 cfv classt
28 24 20 cfv classfy
29 21 28 27 co classxtfy
30 26 29 wceq wfffxsy=xtfy
31 30 18 19 wral wffyBasesfxsy=xtfy
32 31 15 17 wral wffxBasewyBasesfxsy=xtfy
33 14 32 wa wffScalart=wxBasewyBasesfxsy=xtfy
34 33 11 10 wsbc wff[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy
35 34 4 8 crab classfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy
36 1 3 2 2 35 cmpo classsLMod,tLModfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy
37 0 36 wceq wffLMHom=sLMod,tLModfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy